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ABSTRACT

The research area of robotic grasping of soft objects is difficult for multiple reasons: high

cost computation of deformation, and the changes of the wrench space, contact areas, as well

as point wise contact modes inside the areas.

This thesis describes modeling of grasped soft objects and recovering their gravity-free

shapes. Chapter 1 will introduce the background and related work. Chapter 2 will focus on

grasping and picking up soft objects. In the beginning, some results will be shortly described on

resisting a third force applied on a 2D rigid body . The results will show that one of the forces

must lie on an edge of the friction cone in order to achieve the optimized total normal force.

Studying grasping of soft 2D objects will pave the way for picking up 3D objects. Even though

there are some similar methods used in both situations, such as the four events of contact

establishment, contact break, stick-to-slip and slip-to-stick, which can happen in the finger’s

squeezing process, there is still some significant difference between the 2D and 3D cases. This

difference goes beyond just adding one more dimension, because the gravity effect has to be

considered in 3D cases.

In Chapter 3, the focus will be on recovering the shape of a 3D object. Since we use its

shape under gravity to construct the stiffness matrix and compute deformations, errors are

observed in the experiment. The reason behind this, is that the stiffness matrix in conventional

FEM practice already encodes the effect of gravity, which is considered again in the consti-

tutive equation used for computing deformation. Then a numerical iteration method will be

introduced to recover the gravity free shape.
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Chapter1. INTRODUCTION

Picking up of objects by robot fingers is inspired by the human behaviour. Some researchers

have studied the theories and strategies on robot fingers grasping objects. Today, there are

still many interesting topics in this area. Grasping a rigid body has been very well researched

and understood, while there has been less research on the deformable object. However, in

some aspects the study of the deformable object will be harder then that of rigid body. Finite

element method and linear elasticity will be the most effective tools used to study the deformable

objects. Let’s first review the work that has been done in related research areas.

1.1 Related work on rigid body grasping

Rigid body grasping has been studied by many people in the late 20th century. B. Mishra,

J. T. Schwartz, and M. Sharir (1987) have contributed on the definition of form closure. They

gave sufficient and necessary conditions on the bounds on the number of contact points for 2D

and 3D objects to have a form closure. R. C. Brost and K. Y. Goldberg (1994), A. F. Van

der Stappen, C. Wentink , and M. H. Overmars (2000) have come up with the algorithms

to compute all of the form closure grasps for polygons. E. Rimon and A. Blake (1999) have

studied on caging the object with frictionless contact such that the object cannot escape. These

study will be very helpful even in the deformable object research areas. For example, the forces

we apply on the object still have to satisfy the force closure requirement to keep the object

not having any rigid body movement. In 2D case, V-D. Nguyen (1998) efficiently computed

the force-closure grasps for polygons and piecewise smooth shapes. J. C. Trinkle (1992) has

formulated the force-closure test as a linear program. J. Kerr and B. Roth (1986) put up some

measure standards for the quality of a grasp. It was to select grasping forces that were furthest
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from violating any constraint.

1.2 Related work on deformable grasping

Compared to the rigid body grasping, there was not much work done on grasping deformable

objects. H. Wakamatsu and S. Hirai (2004) have studied manipulation of flexible linear objects.

This has been a very active area. Applications can be related to knotting and unknotting, pick

up objects and path planning for a robot.

P. R. Sinha and J. M. Abel (1992) came up with a model for deformation, in order to

predict contact forces without considering global deformation or grasp computation. Q. Luo

and J. Xiao (2006) has studied from the geometric properties to improve simulation accuracy

and efficiency. J. Tian and Y-B. Jia (2010) investigated point contacts grasping deformable

modeling of shell-like objects. F. Guo, H. Lin, Y-B. Jia (2013) have done the work on squeeze

grasping of deformable planar objects by specify the displacements rather than forces. Optimal

strategies for resisting a third force by two fingers squeezing deformable objects was studied by

Y-B. Jia, F. Guo, H. Lin (2013).

Our recent work investigated the strategies of picking up soft 3D objects with two fingers.

In order to use more accurate model for stiffness matrix, recovering the gravity free shape of

soft objects has also been studied.
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Chapter2. PICKING UP SOFT OBJECTS

The rationale for studying how to pick up soft objects is inspired by the human behaviour.

In our daily life, when we grasp an object, we always try to figure out the comfortable direction

and try to save some effort by our tactile feelings. Therefore, it is an interesting topic for us to

perform some theoretical analysis. Later, we can apply the result to a robot hand in grasping.

2.1 Introduction

In this chapter, some simple strategies of picking up soft objects will be introduced. At the

beginning, the discussion is the simplest case: grasping the 2D planar rigid body. Next, the

focus will be on picking up the 2D soft objects. The 2D soft object uses line segment contact

which makes it more complicated than the rigid body’s simple point contact. Next, discussed

is the different events which happened during the picking up process. The problem focused

on at the end will be picking up soft 3D objects with two fingers. It is not simply one more

dimension added on to the previous problem, but there are more technical issues coming up.

2.2 Grasping 2D objects

Most of the objects seen in daily life are 3D objects. However, it would be convenient to

study the simple 2D object first. In order to simplify to 2D, the effect of gravity and also the

third dimension of the object were ignored. In other words, those objects we are studying here

have no height, and they are all planar objects.
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2.2.1 Grasping while resisting a third force

For a rigid body, point contact is the only situation studied. The location of the two fingers

and also the location of the third force being applied is known. The problem is to discern which

direction and how much force should be applied on the two fingers such that their summations

of the normal forces will achieve the minimum.

This is a typical optimization problem. To start looking at this problem is by setting up the

equations from it. By simple knowledge from physics, it is known that these three forces must

satisfy both the force balance law and moment balance law if the two fingers are to resist the

third force successfully. In other words, the whole system has to be in the balance mode. Also,

to achieve the force closure, the contact forces have to lie inside the corresponding friction cones.

Suppose that the positions of the two fingers will be at p1 = (p1x, p1y) and p2 = (p2x, p2y).

The position of the third disturbing force is at p3 = (p3x, p3y). Here, since we are studying the

planar objects, the locations of the points on them will be represented by the 2D coordinates

on a plane. The first component means the amount in x-direction. Correspondingly, the second

component in the coordinates relates to the y-direction. Remember we have already specified

the third force. Without lost of generality, we can always assume that the direction of the force

is horizontally from right to the left, which is following the direction of the unit vector (−1, 0).

Then the third force would be f3 = (f3x, f3y) = (f3x, 0), f3x < 0, as well as the assumption that

the normal vectors of the object at the place where the two robot fingers apply forces would

be n1 = (n1x, n1y) and n2 = (n2x, n2y). The normal force of the two fingers would therefore be

f1n = f1 ·n1 = f1xn1x+f1yn1y, and the same idea we can get f2n = f2 ·n2 = f2xn2x+f2yn2y.

By the force balance law, we will have the following set of equations:

f1x + f2x + f3x = 0 (2.1)

f1y + f2y + f3y = 0 (2.2)

Since the total momentum should be zero, we get:

(f3xp3y − f3yp3x) + (f1xp1y − f1yp1x) + (f2xp2y − f2yp2x) = 0 (2.3)
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Then, from the first two equations, f2x and f2y can be written as the linear combinations

of f1x and f1y. Thus, f1n and f2n can also be written as the linear combinations of f1x and f1y.

Plug in to the third equation, then obtained is every unknown variables to be represented in

terms of the variable f1x. Apparently this is true, since originally there are four variables f1x,

f2x,f1y and f2y, and in total three equations, so it’s clear that we can do operations to simplify

them until every variable is represented only by f1x. For example, we can get

f1y =
f1x(p1y − p2y) + f3y(p2x − p3x) + f3x(p3y − p2y)

p1x − p2x
(2.4)

f1n =
f1x((p1x − p2x)n1x + (p1y − p2y)n1y) + f3y(p2x − p3x) + f3x(p3y − p2y)

p1x − p2x
(2.5)

Now that it is understood not only they can be represented by f1x, but also in linear term

of f1x. Remember the goal is to come up with the best way to resist a third disturbing force.

Since it’s all rigid objects, the work will be zero. So the superior way is to minimize the

magnitude of total normal forces. Therefore, our problem can be summarized and formulated

as an optimization problem:

Minimize f21n + f22n (2.6)

Subject to : (
f1 · n1

‖f1‖‖n1‖
)2 ≥ (cos θ̃)2 (2.7)

(
f2 · n2

‖f2‖‖n2‖
)2 ≥ (cos θ̃)2 (2.8)

f1n > 0 (2.9)

f2n > 0 (2.10)

Here, the last two constraints are applied because we don’t discuss the the outward force since

non of the fingers have an adhesive. Also we don’t discuss the extreme situation, such like the

friction coefficient is infinity big, because we don’t consider the situation when at least one

of the normal forces is equal to zero. θ̃ is the angle of half of the friction. Meanwhile, if the

friction coefficient of the material is µ, then they have the relation that µ = arctan θ̃. Now we

formulate our problem to be a quadratic minimization problem. Since the variable here is f1x,
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and the other terms are in the linear form, therefore it is a quadratic optimization problem.

Before any computing is done, a theorem was found after a great deal of experiments.

Theorem 1 To achieve the minimum value, at least one of the finger forces should lie on

an edge of the corresponding cone of friction, which also means at least one of the first two

inequality constraints has to be an equality.

Proof By contradiction. Consider the easiest case first when the object is symmetric and the

normal direction is the same as y direction. Suppose when we achieve the minimum value in

terms of f1n, both of the inequality constraints are taking the strictly greater than sign. Thus

we can pick an ε small enough, such that when we change f1n to be f1n− ε, all the constraints

are still satisfied. Due to the linearity, f2n is changed to be f2n− ε. We can always achieve this

by rotating the forces a little to keep the magnitude of the force, but the force on the normal

direction becomes smaller. However, in this case, the objective function value changes from

f21n + f22n to be (f1n− ε)2 + (f2n− ε)2, which is a smaller value and contradicts to the fact that

the previous achieves the optimum.

The simulation result also support our proof. In this thesis we use the metric system for

every unit. For example, meters, kilograms, Newton and so on. Here we consider a simple

example of a disc shape object with radius r = 2 and friction coefficient 0.8. The positions of

the two fingers and the third force are at p1 = (−1,−
√

3) and p2 = (0, 2) and p3 = (2, 0). The

third force is f3 = (−2, 0). The normals where the fingers are placed are n1 = (1/2,
√

3/2) and

n2 = (0,−1). After using the Wolfram Mathematica 8.0 function NMinimize, the result that

f1x = 1.30468 is attained and the minimized magnitude of the total normal forces is 2.72956.

Figure 2.1 illustrates this result.

The black arrow presents the forces of the two fingers and also the third disturbing force.

From the figure we can see it is true that at least one of the finger force must lie on the friction

cone.
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Figure 2.1 Optimal two fingers normal forces to an external disturbance (horizontal black

arrow). The blue and red lines are the edges of the friction cones, and the other

two black arrows represent the forces applied by the two fingers.

2.2.2 Grasping soft 2D objects

Grasping 2D soft objects is more challenging than grasping the rigid object, due to the

changes of wrench space under deformation. With the contact area growing, the contact points

contained in the contact line segment will switch their status between slip and stick. In this

part, we will introduce two standards of squeeze grasping soft 2D objects by two fingers, which

are pure squeeze grasp and stable squeeze grasp. Then we will discuss the four different events

which happened during the process of grasping the objects. The paper F. Guo, H. Lin, Y-

B. Jia (2013) also introduced simulations and experiments to support the assumptions.

To start with, we can consider the displacement field δ = (u(x, y), v(x, y))T . Under it, every

point (x, y)T inside the 2D planar object moves to (x + u, y + v)T . The strain energy density

is given as

U0 =
h

2

∫∫
S

(
E

1− ν2
(ε2x + 2νεxεy + ε2y) +

E

2(1 + ν)γ2xy
) dx dy. (2.11)
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where

εx = ∂u/∂x

εy = ∂v/∂y

γxy = ∂u/∂y + ∂v/∂x

are strains, and h is the very small thickness of the object. The figure 2.2 shows it. Denote

Figure 2.2 Example of thin object

the force at point (x, y) to be f(x, y). Then the total potential energy of the system is

Π = U0 −
∑

(x,y)T

δ(x, y)Tf(x, y). (2.12)

Next, I will state several important theorems that we will need in the future.

Theorem 2 Under linear elasticity, any displacement field δ = (u(x, y), v(x, y))T that yields

zero strain energy is linearly spanned by the following three fields: tx = (1, 0)T , ty = (0, 1)T

and r = (−y, x)T .

The proof can be found in Y-B. Jia, F. Guo, H. Lin (2013). Remove δ from its projections

onto tx, ty and r will give us

δ⊥ = δ − 〈δ, tx〉
〈tx, tx〉

tx −
〈δ, ty〉
〈ty, ty〉

ty −
〈δ, r〉
〈r, r〉

r. (2.13)
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Definition 1 A pure deformation field δ⊥ is orthogonal to tx, ty and r and contains no rigid

body movement. If a squeeze generate pure deformation of the object, we call it is a pure

squeeze.

Definition 2 If a squeeze minimizes the potential energy of the system among all squeezes of

the same magnitude, we call it is a stable squeeze.

During the squeeze of the two fingers, every contact points can be detected by the definition

of the following four different events. (1) Event A: new contact. This is the case when we detect

a new node on the boundary comes in to contact with one of the fingers. Add this new node

to stick set T or the slip set P according to the result small squeeze test of if it will stay inside

the friction cone(stick) or else (slip). (2) Event B: contact break. If the magnitude of the force

of a point is zero, which is ‖fk‖ = 0, then this point will no longer be a contact point. In this

case, the contact is broken for this point and we remove it from either the stick set T or the

slip set P . (3) Event C: stick to slip. If the contact force is rotating out of the friction cone,

then the point starts to slip. We remove this point from set T and add it to set P . (4) Event

D: slip to stick. If the slip point changes its direction of slip, we remove it from P and add it

to T .

These events will also be very helpful on analyzing the grasping of object on the 3D case,

which we will focus more in this chapter.

2.3 Picking up soft 3D objects with two fingers

In this section, we will discuss a simple strategy of picking up a 3D soft object by two

fingers. The idea is inspired by human being behaviour. In our daily life, when we try to

pick up an object, we usually squeeze a little bit, and feel if we can lift the object up. If the

squeeze depth is not big enough, we may need to squeeze a little bit more until it is enough to

hold the weight and finally lift up the object. The paper written by H. Lin, F. Guo, F. Wang,

Y-B. Jia (2014) described the details about the topic.
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2.3.1 Theoretical background

In fact, the 2D case and 3D case have similar aspects in analysis with each other. However,

there also exists a huge difference between them. To study the 3D case, it is not simply to add

one more dimension. Due to the third dimension, we have to consider the effect of the gravity

on the shape of the object, which was ignored in the 2D planar object case. Here is a picture

2.3 1 simulates picking up a soft object. We will begin with a brief review of linear elasticity

Figure 2.3 Lifting up a 3D object

applied in 3D situation. In the previous section, I have presented the terminologies in 2D case.

Consider ever point in the 3D case moves from (x, y, z)T to (x + u, y + v, z + w)T . Similarly,

1Courtesy of Huan Lin.
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we have the normal strains and the shear strains denoted as follows:

εx = ∂u/∂x

εy = ∂v/∂y

εz = ∂w/∂z

γxy = ∂u/∂y + ∂v/∂x

γyz = ∂v/∂z + ∂w/∂y

γzx = ∂w/∂x+ ∂u/∂z

The strain energy in the 3D case is

U0 =
E

2(1 + ν)

∫
V

[
ν

1− 2ν
(εx + εy + εz)

2 + (ε2x + ε2y + ε2z) +
1

2
(γ2xy + γ2yz + γ2zx)

]
dV. (2.14)

Compared to the 2D case, we have a similar theorem:

Theorem 3 Under linear elasticity, any displacement field δ = (u(x, y, z), v(x, y, z), w(x, y, z))T

that yields zero strain energy is linearly spanned by the following three fields: (1, 0, 0)T , (0, 1, 0)T ,

(0, 0, 1)T , (0,−z, y)T ,(z, 0, x)T , and (−y, x, 0)T .

The potential energy in 3D case is

Π = U −W =
1

2
∆TK∆−∆T (F +G). (2.15)

It reaches the minimum value with the constitutive equation

K∆ = F +G. (2.16)

After the preview of the math and physics background, let now move back to focus on the

strategy of picking up the object. The idea is not hard to understand. First first compute

the object’s initial configuration of lying on the table by iterative procedure. Then during the

process of squeezing the object by two fingers, we will do the lift test simultaneously. If the

object finally past the lift test, then it means we can successfully lift it up. Otherwise, if the

squeeze depth is to big such that it is over the range of the linear elasticity, then the lift test

failed.
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Let us start by constructing the initial configuration of the soft object lying on a plane

using algorithm 1. Here, we denote the indices of the nodes that are in contact with the two

fingers and the plane to be I, J, and K. Denote P to be the set that collects the indices of

sliding nodes.

Algorithm 1 Compute initial resting configuration.

1: P→ ∅.
2: Compute the change displacement vector ∆′ from the displacement vector ∆. Correspond-

ingly compute the change force F ′ from the contact force F .

3: ∆→∆ + ∆′ and F → F + F ′.

4: If there is no new contact node and fk lies in side the friction cone for every k ∈ K, then

STOP.

5: Otherwise deal with the new contact.

6: Find sliding nodes and add the corresponding indices into P.

7: Recompute the sliding nodes’ displacements.

Briefly, the algorithm can be summarized as first evaluate the displacement without con-

sidering sliding. If there is some new contact node, add the furthermost displacement below

plane and scale down displacements, and identify sliding nodes and recompute displacements,

go back to the iterations. If there is no new contact points and no sliding point, that means

we have successfully computes the initial configuration and we can stop.

After we finish computing the initial resting configuration, the two fingers will be translating

in a constant direction step by step. During the process, we will do the lift test to see if the

forces are big enough to lift the object. The lift test is about the liftable weight w during the

process of lifting. Liftable weight is the weight that the finger fources can hold until one of the

fingers almost starts to slide. Originally we suppose the liftable weight is zero. As the squeeze

step increases, the liftable weight also goes up. Once the liftable weight reaches the object’s

weight, the lift test is passed. The algorithm is as follows.

There will also be four events happen during the process. The contact sets I, J, and K will

not change until the next event happen. The definition of these four events are exactly the

same as previous section: (A) contact establishment, (B) contact break, (C) stick to slip and

(D) slip to stick.

During the process, it is important for us to track the movements of all the sliding nodes.
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Algorithm 2 Pick up 3D deformable object by two fingers.

1: Input tetrahedron mesh of the object, initial table contact triangle with vertices pq,pr,ps.

Finger contacts pi,pj , squeeze (d1,d2).

2: Check if pi,pj with the initial triangle forms a force closure. If not, return FAIL. Otherwise,

continue to the next step.

3: Use algorithm 1 to compute the initial resting configuration.

4: Squeeze the object by translating the two fingers with the forces F 1,F 2.

5: Do lift test during the squeezing process.

6: If so, stop squeezing object and change to lifting the object. Record the squeeze depth.

7: If enough squeeze depth has been applied but still cannot be picked up, return FAIL. Else

go back to step 4.

Remember their indices are collected in the set P. The sliding can happen in the contact plane

or the semi spherical fingers. Thus, we will have two different equations to solve the sliding

variable dk.

First, for the sliding points happen in the contact plane, the force fk, k ∈ P has to lie on

the edge of the friction cone. What’s more, each fk is a linear function of all the variables dl,

l ∈ P. Suppose the friction coefficient between the object and the table is µp, then we will have

the system of |P| quadratic equations:

(1 + µ2p)(fk · z)2 = fk · fk. (2.17)

Here the z is the normal of the plane, which is (0, 0, 1). Then suppose the friction coefficient

between the finger and the object is µF . Assume p̃k is the position before slip, and reach some

point qk. The contact force has the tangential component as

f i⊥ = fk − (fk · nk)nk. (2.18)

The sliding will be along the opposite direction of fk⊥. Denote the sliding angle along the

great circle of the finger to be θk, and ck = cos θk, sk = sin θk. The equations will be:

(1 + µ2F )(fk · nk)2 = fk · fk, (2.19)

c2k + s2k = 1. (2.20)

Figure 2.4 helps us understanding the situation happens on a finger.
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Figure 2.4 Sliding of a node on the hemispherical finger

After every fk is written as linear combinations of the variables dl, a large system of

quadratic equations is attained. To store those quadratic equations, pull out the coefficients to

be a coefficient matrix. Since it is a very complicated system, we can only solve it by numerical

methods. Here, the homotopy continuation method is used to solve it. This method is also used

in the function ”RootFinding” in a mathematics software called ”Maple”. Homotopy method

is used to find the isolated root of the system of polynomial equations with the same number of

variables in each of the equations.This method is a continuous map from a set of constructed

known solutions to the solutions of the input system. The map function is constructed as

H(x, t) = {(1−(1−t)2)p1(x1, . . . , xn)−(1−t)2q1(x1), . . . , (1−(1−t)2)pn(x1, . . . , xn)−(1−t)2qn(xn)}.

(2.21)

Here, q1(x1), . . . , qn(xn) are a sequence of generated random polynomials, and they are called

the generated starting system. It is not hard for us to notice that when t = 0, the solution of

H(x, 0) = 0 will be the solution of the generated starting system. When t = 1, H(x, 1) = 0

gives us the solution of the input system. We start from the following way.

Here, we need further explanation on step 4. Since H(x, t) = 0, we can do the partial

differentiation with it and get:

∂H

∂x
· dx
dt

+
dH

dt
= 0. (2.22)

Then we can get:

dx

dt
= −(

∂H

∂x
)−1

dH

dt
. (2.23)
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Algorithm 3 Homotopy method.

1: Input the system of polynomials p1(x1, x2, . . . , xn), . . . , pn(x1, x2, . . . , xn) .

2: Generate a start system q1(x1), . . . , qn(xn) .

3: Construct the map function as equation (2.21).

4: Differentiate the system and turn it into an ODE problem. Time t changes from 0 to 1.

The path will be followed by discrete steps.

5: At each step, using an ODE solution method as a predictor, then use the Newton’s numer-

ical method to polish the root to ensure the computed root stay on the path.

6: iterate enough steps and output the result.

Then change from x(0)→ x(h), we can use the following to compute:

x(h) = x(0) + h
dx

dt
(0). (2.24)

The general iterations will be,

xn+1 = xn + h
dx

dt
(xn). (2.25)

After each iteration, polishing of the values is needed by using Newton’s method,

x∗n+1 = xn+1 − (
∂H

∂x
(xn+1))

−1H(xn+1). (2.26)

We choose homotopy method to solve the roots instead of Newton’s reason. The reason is that

homotopy method is a global convergent method. However, Newton’s method only converge

when you star with a very close initial guess to the real solution.

2.3.2 Simulations and experiments

We have done the simulations and experiments on four different objects: tomato, orange,

steam bun and toy football. Their data is listed as below in Table(2.1).

The simulations and experiments figures is in Figure (2.5).

It would be an interesting topic for us to study about how the softness of an object affects

the grasping and lifting up of this object. Young’s modulus affects the softness of an object. If

the number is bigger, it means the object’s material is harder. When Young’s modulus goes to

infinity, that means the object is close to a rigid body.

To figure out how Young’s modulus affect the grasping and lifting, I have conducted several

simulation examples. I took down the data of the total work the finger did during the process
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Table 2.1 Information of the objects

tomato orange steam bum football

vertices 490 600 658 875

surface facets 498 564 646 782

tetrahedra 2129 2692 2941 4058

weight w 1.246 1.868 0.467 0.489

Young’s modulus E 1.0× 105 1.4× 105 2.0× 103 6.0× 103

Poisson’s ratio ν 0.4 0.4 0.2 0.3

friction coefficient µ 0.32 0.34 0.4 0.5

of squeezing until the object is liftable. The study object is in the same shape as the football.

There are in total 332 grid points on the surface of the football. The Poisson’s ratios is 0.3,

density of the object is 2 × 102. Here, we fix all the other parameters, and let the Young’s

modulus change from 1.0×103 to 6.0×104, part of the data of total work is shown in Table(2.2).

Table 2.2 Young’s modulus with total work

E total work

1.0× 103 0.000862824

4.0× 103 0.00150976

9.0× 103 0.00342252

3.0× 104 0.00475993

6.0× 104 0.00770573

The plot data of the relationship between Young’s modulus and fingers total work is in

Figure(2.6).

From the data, we can preliminary get the result that to pick up a harder objects seems

to cost more work. However, this topic still needs further understanding since we don’t have

the theoretical result currently. The little discontinuous jump in the picture is caused by the

discretization of the object, and also the squeeze depth.

2.4 Future work

In the future, the goal will be to get theoretical results and further understandings of the

relationship between the softness of the object and also the total work need to do in order

to pick up the object, also the study on optimizing the finger placements and the squeezing
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Figure 2.5 Picking up objects successfully. An entry in the last row lists the number of contact

nodes, the squeeze depth, and the running time

directions.
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Figure 2.6 Relations between the Young’s modulus and total work
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Chapter3. RECOVERING THE GRAVITY-FREE SHAPE OF A 3D

DEFORMABLE OBJECT

The stiffness matrix of an object is based on the shape of it, which helps describe the

displacement under certain forces and study the deformation of the object. Basically, a stiffness

matrix reflects the geometric and material property of an object. When we construct the

stiffness matrix based on the finite element method, we already neglect the fact that the object

is already under gravity force and has some deformation based on the gravitational force.

However, to get the accurate model, we require the exact shape of the object in a gravity

free situation. Hence, it is interesting for us in gravity-free situation to explore and know the

information of the original shape of an object.

3.1 Introduction

Everywhere people’s daily life is affected by gravity. For example, when you place an animal

organ on a plate, it will change the shape due to the different positions and faces you put it

in. The same thing will happen to a tomato. When you put it upside down, it looks very

different from when you put it face up. However strictly speaking, a solid deformable object

setting on a plane will change shapes due to gravity, this is not equivalent to any kind of rigid

body transformation. To pick up a soft solid object, not only does the force have to balance

the gravity, but also the change of geometry and contact areas have to be considered.

The gravitational force acts throughout the solid relative to its volume. To obtain the

deformed shape we need to get the minimized potential energy, which equals the body’s strain

energy minus the external forces related work. The finite element method gives us instruction

to discretize the object body into meshes. Then based on the corresponding forces applied on
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the body mesh to construct the stiffness matrix, displacement vector and the force vector can be

set up as a linear system of equations. This solves the unknown displacement variables. Here,

the equation is called the constitutive equation, which is a very classical result in mechanics

and physics. It has the form of the product of stiffness matrix and displacement vector on the

left, and the force vector on the right side of the equation.

Usually, when we construct the stiffness based on FEM theory, the shape we use is based

on the observed shape, which is under gravity. However, the gravity affects the elements inside

the matrix in nonlinear sense, it’s not simply a coefficient multiplied by the matrix. To treat

the gravity force, it’s in a similar way to treat the body force that is applied on an object.

It’s not appropriate to simply exempt the gravitational force on both sides of the constitutive

equation since the property of stiffness matrix is nonlinear to the gravity term. But in many

situations, people use the shape under gravity to construct the stiffness matrix; this won’t give

them too much error in the situations like light object or perhaps there is so much body force

that gravity force’s effect can be ignored.

To get a more precise model when the gravity effect can’t be ignored, the idea is to restore

the original shape of the object, then construct the stiffness matrix based on a more accurate

shape. With the gravity-free model, we can continue to calculate more body force effect applied

on the object and obtain a more precise result. In the next several sections, we will review

the method of FEM applying on computing the deformation of solid object sitting on a plane.

Then describe the fixed point iteration method which we used to solve for the model in single

tetrahedron and normal objects separately. Also, I will provide the related experiment about

applying the gravity free model to calculate the deformation of an object and compare with

the old method, which is using the under gravity model.

Metric system is applied everywhere in the discussion, e.g., for length we use meter, for mass

we use kilogram, for force we use Newton, and for pressure we use Pascal and so on. We will not

mention the units again during the discussion. When a vector is mentioned, we usually mean

it is a column vector. Some other math notations, for example, a vector v = (v1, v2, . . . , vn)T

is a row vector, to calculate the derivative of the scalar u with respect to vector v will be

∂u/∂v = ( ∂u∂v1 , . . . ,
∂u
∂vn

). The derivative of a vector u = (u1, u2, . . . , um)T with respect to
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another vector v = (v1, v2, . . . , vn)T will be a matrix:

∂u

∂v
=


∂u1/∂v1 . . . ∂u1/∂vn

. . . . . . . . .

∂um/∂v1 . . . ∂um/∂vn

 , (3.1)

3.2 FEM applied in computing the deformation

3.2.1 Introductions about constitutive equation and reduced stiffness matrix

For a soft solid object sitting on a plane like a table, it deforms under gravity force and

also the supporting force from the plane. The gravity force is usually ignored based on the

traditional FEM application models. By using the 3D scanner, we can generate the triangulated

3D mesh of the object under gravity. We call those points on the mesh to be p1, . . . ,pn, and the

corresponding displacement vectors with respect to those points will be δ1, . . . , δn. The stiffness

matrix constructed over the current under gravity mesh will be called K ′. The constitutive

equation we have mentioned before for computing the deformation of the object is:

K ′(δT1 , . . . , δ
T
n )T = F (3.2)

Although the total gravitational force and supporting force will be balanced, it’s easy to

be seen that the F in the equation is not a simple zero, since there are still internal forces

to balance each other. There seems to exist a contradiction at first glance of the equation,

since the object is already balanced by the forces, where should the deformations come from.

This is result by the inaccurate model that FEM usually used, because it doesn’t concern the

deformation caused by the gravitational force. However, in the real situation, it happened that

we can’t ignore the result by gravity when there is not a negligible amount of effect on the

shape of the object. When the mass of the object is small, usually the gravity won’t cause

much deformation, thus using the inaccurate model won’t give us much error. However, if we

still use the old model, when the mass of the object is large enough so that the gravity effect

can’t be ignored, there can be some non negligible error evolved.
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To fix this issue, we will compute the stiffness matrix of the object under gravity free shape,

then apply this stiffness matrix to calculate further deformations of the object with other body

forces. Here are some notations: we denote p1, . . . ,pn to be the gravity free locations of the

points on the mesh, and denote p̃1, . . . , p̃n to be the locations of the points under gravity

(also observed shape). Each of them is a point with x, y, z coordinates. For 1 ≤ i ≤ n,

pi = (xi, yi, zi)
T and p̃i = (x̃i, ỹi, z̃i)

T . Define the nodal displacement δi = p̃i−pi = (ui, vi, wi)
T .

We assume that the gravitational force is uniformly applied on the object. Thus, for each of

the triangulated tetrahedron in the mesh, each of the vertices takes one fourth of the the

corresponding tetrahedron’s gravity force. During the process of deformation under gravity,

we assume that all of the vertices that contact the plane will still stick to the plane due to

the large enough friction. Let those sticking points’ index be from n − s + 1, . . . , n, which

are pn−s+1, . . . ,pn. Then correspondingly, since they are sticking to the plane, there is no

changing position for them, so δn−s+1 = . . . = δn = 0. After which, to completely describe the

problem, we will need the vector P = (pT1 , . . . ,p
T
n−s)

T ,the vector P̃ = (p̃T1 , . . . , p̃
T
n−s)

T , and

∆ = (δT1 , . . . , δ
T
n−s)

T . We still have P = P̃ −∆.

For the gravitational force exerted on the points p1, . . . ,pn−s, call it G, which is a m

dimensional vector, m = 3(n − s). Due to the reason that the last s positions of points on

the mesh are fixed, we will only be interested in the reduced stiffness matrix K, which is

eliminated the last 3s rows and columns. The reduced stiffness matrix will be symmetric and

positive definite. It will depends on P , which is essentially depends on the solution corresponds

to ∆ and P̃ . So we can rewrite the constitutive equation as:

K(∆)∆ = G+ F (3.3)

3.3 Stiffness matrix construction

In a 3D body under a displacement field (u, v, w), the strain energy density is given as

U0 =
1

2
(σxεx + σyεy + σzεz + τxyγxy + τyzγyz + τzxγzx) (3.4)
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where

εx = ∂u/∂x

εy = ∂v/∂y

εz = ∂w/∂z

γxy = ∂u/∂y + ∂v/∂x

γyz = ∂v/∂z + ∂w/∂y

γzx = ∂w/∂x+ ∂u/∂z

are strains, and

σx =
E

(1 + ν)(1− 2ν)
[(1− ν)εx + νεy + νεz] (3.5)

σy =
E

(1 + ν)(1− 2ν)
[νεx + (1− ν)εy + νεz] (3.6)

σz =
E

(1 + ν)(1− 2ν)
[νεx + νεy + (1− ν)εz] (3.7)

τxy =
E

2(1 + ν)
γxy (3.8)

τyz =
E

2(1 + ν)
γyz (3.9)

τzx =
E

2(1 + ν)
γzx (3.10)

are stresses, and E and v are Young’s Modulus and Poisson’s ratio.

Substitute Equations (3.5) to (3.10) in Equation (3.4),

U0 =
E

4(1 + ν)

∫
V

[
2(1− ν)

1− 2ν
(ε2x + ε2y + ε2z) +

4ν

1− 2ν
(εxεy + εyεz + εzεx) + (γ2xy + γ2yz + γ2zx)

]
dV.

(3.11)

Rewrite the inside integrals to be perfect squares, we get:

U0 =
E

2(1 + ν)

∫
V

[
ν

1− 2ν
(εx + εy + εz)

2 + (ε2x + ε2y + ε2z) +
1

2
(γ2xy + γ2yz + γ2zx)

]
dV. (3.12)

Suppose Vi = (xi, yi, zi)
T , and di = (ui, vi, wi)

T , i = 1, 2, 3 and 4 are the position and

displacements of the vertices of a Tetrahedron respectively. Denote P the position, and d the

displacement of a point inside the tetrahedron. They can be interpolated using Barycentric
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interpolation:

P =

4∑
i=1

ci(xi, yi, zi)
T , (3.13)

d =
4∑
i=1

ci(ui, vi, wi)
T (3.14)

where ci’s are positive and
∑4

i=1 ci = 1. Substitute c4 = 1 −
∑3

i=1 ci in Equations (3.13)

and (3.14):

P = (x, y, z)T = (x4, y4, z4)
T +

3∑
i=1

ci(xi − x4, yi − y4, zi − z4)T , (3.15)

d = (u, v, w)T = (u4, v4, w4)
T +

3∑
i=1

ci(ui − u4, vi − v4, wi − w4)
T . (3.16)

Taking partial derivatives with respect to c1, c2 and c3, we get
∂x
∂c1

∂x
∂c2

∂x
∂c3

∂y
∂c1

∂y
∂c2

∂y
∂c3

∂z
∂c1

∂z
∂c2

∂z
∂c3

 =


x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4

 (3.17)


∂u
∂c1

∂u
∂c2

∂u
∂c3

∂v
∂c1

∂v
∂c2

∂v
∂c3

∂w
∂c1

∂w
∂c2

∂w
∂c3

 =


u1 − u4 u2 − u4 u3 − u4

v1 − v4 v2 − v4 v3 − v4

w1 − w4 w2 − w4 w3 − w4

 . (3.18)

The absolute value of the determinant of the matrix in the right hand side of Equation (3.17)

is 6 times the volume of the tetrahedron. Since the tetrahedrons have positive volume in this

case, the matrix is fully ranked, and its inverse exists. From Equation (3.17), we obtain
∂c1
∂x

∂c1
∂y

∂c1
∂z

∂c2
∂x

∂c2
∂y

∂c2
∂z

∂c3
∂x

∂c3
∂y

∂c3
∂z

 =


∂x
∂c1

∂x
∂c2

∂x
∂c3

∂y
∂c1

∂y
∂c2

∂y
∂c3

∂z
∂c1

∂z
∂c2

∂z
∂c3


−1

=


x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4


−1

(3.19)

Let us go back to the strains,

εx =
∂u

∂x
=

3∑
i=1

∂u

∂ci

∂ci
∂x

=
3∑
i=1

∂ci
∂x

(ui − u4) =
3∑
i=1

∂ci
∂x

ui −
3∑
i=1

∂ci
∂x

u4. (3.20)
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Now εx is represented by the displacements of the 4 vertices. Similarly, we represent all the

(parts of) strain terms by the displacements of vertices as


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 =


∂c1
∂x

∂c2
∂x

∂c3
∂x −

∑3
i=1

∂ci
∂x

∂c1
∂y

∂c2
∂y

∂c3
∂y −

∑3
i=1

∂ci
∂y

∂c1
∂z

∂c2
∂z

∂c3
∂z −

∑3
i=1

∂ci
∂z





u1 v1 w1

u2 v2 w2

u3 v3 w3

u4 v4 w4


. (3.21)

With Equation (3.21), we can assemble the stiffness matrix.

Denote Q the first matrix on the right-hand side of (3.21), and Qij its entry in row i and

column j. Then

εx =
∂u

∂x
=

4∑
i=1

Q1iui, εy =
∂v

∂y
=

4∑
i=1

Q2ivi, and εz =
∂w

∂z
=

4∑
i=1

Q3iwi.

So

ε2x = (u1, u2, u3, u4)



Q2
11 Q11Q12 Q11Q13 Q11Q14

Q12Q11 Q2
12 Q12Q13 Q12Q14

Q13Q11 Q13Q12 Q2
13 Q13Q14

Q14Q11 Q14Q12 Q14Q13 Q2
14





u1

u2

u3

u4


, (3.22)

ε2y = (v1, v2, v3, v4)



Q2
21 Q21Q22 Q21Q23 Q21Q24

Q22Q21 Q2
22 Q22Q23 Q22Q24

Q23Q21 Q23Q22 Q2
23 Q23Q24

Q24Q21 Q24Q22 Q24Q23 Q2
24





v1

v2

v3

v4


, (3.23)

ε2z = (w1, w2, w3, w4)



Q2
31 Q31Q32 Q31Q33 Q31Q34

Q32Q31 Q2
32 Q32Q33 Q32Q34

Q33Q31 Q33Q32 Q2
33 Q33Q34

Q34Q31 Q34Q32 Q34Q33 Q2
34





w1

w2

w3

w4


. (3.24)
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On the other hand,

γxy =
∂u

∂y
+
∂v

∂x
=

4∑
i=1

(Q1ivi +Q2iui),

γyz =
∂v

∂z
+
∂w

∂y
=

4∑
i=1

(Q3ivi +Q2iwi),

γzx =
∂u

∂z
+
∂w

∂x
=

4∑
i=1

(Q3iui +Q1iwi).

Let dt = (u1, v1, w1, · · · , u4, v4, w4)
T . Then,

γ2xy = (
4∑
i=1

Q1ivi)
2 + (

4∑
i=1

Q2iui)
2 + 2(

4∑
i=1

Q1ivi ·
4∑
i=1

Q2iui) (3.25)

After we expend every term in equation 3.12, we also know that

U0 =
1

2
dTt Kdt. (3.26)

Then we compare those two expansions to get the form of stiffness matrix K.

3.4 The case of one tetrahedron

Given a single tetrahedron with four vertices (x̃i, ỹi, z̃i), i = 1, 2, . . . , 4, lying on a table under

gravity, we want to recover its shape in the situation without gravity. Suppose the coordinates of

the vertices in the original shape are (xi, yi, zi), i = 1, 2, . . . , 4. When we apply the gravity to the

object, the displacement of each of the vertices will be (ui, vi, wi) = (x̃i, ỹi, z̃i)− (xi, yi, zi), i =

1, 2, . . . , 4. In our model, we fix the bottom three points of the tetrahedron. Hence, (ui, vi, wi) =

(0, 0, 0), i = 2, 3, 4. In order to solve for the displacement vector of ∆∆∆ = (u1, v1, w1, 0, ......, 0)T ,

we will start from the constitutive equation:

K∆∆∆ = FFF +GGG, (3.27)

where K is the 12×12 stiffness matrix of the original shape, which is constructed based on the

displacement variables ui, vi, wi and data of the current shape x̃i, ỹi, z̃i, and

FFF = (0, 0, 0, f2x, f2y, f2z, . . . , f4x, f4y, f4z)
T , (3.28)
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GGG = (0, 0,−G/4, . . . , 0, 0,−G/4)T . (3.29)

Here, G is the gravity of the tetrahedron. We apply the gravity force equally on the four

vertices, which means G/4 along −z direction for each.

Below, Figure 1 shows us an example of a single tetrahedron. Without loss of generality,

we can always pick one surface of the tetrahedron to lie on the x-y plane, two of its vertices P2

and P4 along x-axis with one of them P4 at the origin, and the other with coordinates (x̃2, 0, 0).

Figure 3.1 A tetrahedron

Nine constraints are imposed from fixing the vertices P2, P3, and P4. We are left with

only three variables, which are u1, v1, and w1. Therefore, we can reduce the twelve nonlinear

equations in equation(3.27) to just three equations, which are the first three rows of each of

the component. The reduced system is shown as below:


EV

4(1+ν)(w1−z̃1)2 0 0

0 EV
4(1+ν)(w1−z̃1)2 0

0 0 EV (ν−1)
2(1+ν)(2ν−1)(w1−z̃1)2




u1

v1

w1

 =


0

0

−G
4

 , (3.30)

where E is the Young’s modulus, ν is Poisson’s ratio, and V is the volume of the original

tetrahedron. We denote the above equation as:

K̄∆̄∆∆ = ḠGG, (3.31)
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Since K̄ is a diagonal matrix, u1 and v1 will be 0. This implies that the displacement of the

top point only happens in z direction. Recall that our goal is to solve ∆̄∆∆. Since K̄ is a full rank

matrix, we can simply solve the system by:

∆̄∆∆ = K̄−1ḠGG. (3.32)

For one tetrahedron, it seems to be very easy to solve it algebraically, but for other complex

models, we should consider using numerical iteration methods. Here, we introduce a damping

factor r ∈ (0, 1] to form the following iteration equation based on equation (3.32):

∆̄∆∆
(k+1)

= (1− r)∆̄∆∆(k)
+ rK̄(∆̄∆∆

(k)
)−1ḠGG. (3.33)

We may rewrite the method as:

α(∆̄) = (1− r)∆̄∆∆ + rK̄(∆̄∆∆)−1ḠGG. (3.34)

Then rewrite the major iteration part as another function:

β(∆̄) = K̄(∆̄∆∆)−1ḠGG. (3.35)

the algorithm is:

Algorithm 4 iteration method for recovering the shape of the object without gravity

1: Compute the initial stiffness matrix of the object under gravity, and ∆̄∆∆
(0)

= 000.

2: At step k, k=1,2,. . . , apply an extra gravity forceGGG and compute the reduced displacement

vector ∆̄∆∆
(k)

by using equation (3.32), which is based on the stiffness matrix K̄(∆̄∆∆
(k−1)

).

Then, apply −∆̄∆∆
(k)

to the current shape and compute the new reduced stiffness matrix

K̄(∆̄∆∆
(k)

).

3: k = k + 1.

4: Repeat steps 2 and 3 until the difference of the shapes in two consecutive steps are close

enough.

The iteration method comes down to solving a fixed point problem:

∆̄∆∆ = h(∆̄∆∆), (3.36)
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where,

h(∆̄∆∆) = (1− r)∆̄∆∆ + rK̄(∆̄∆∆)−1ḠGG

= (1− r)


u1

v1

w1

+ r


4(1+ν)(w1−z̃1)2

EV 0 0

0 4(1+ν)(w1−z̃1)2
EV 0

0 0 2(1+ν)(2ν−1)(w1−z̃1)2
EV (ν−1)




0

0

−G
4



=


(1− r)u1

(1− r)v1

(1− r)w1 − r(1+ν)(2ν−1)G(w1−z̃1)2
2EV (ν−1)

 .

In the above, V is the volume of the original shape:

V =
1

3
× 1

2
× x2 × y3 × z1 =

x̃2ỹ3(z̃1 − w1)

6
. (3.37)

Then,

h(∆̄∆∆) =


(1− r)u1

(1− r)v1

(1− r)w1 + 3r(1+ν)(2ν−1)G(w1−z̃1)
E(ν−1)x̃2ỹ3

 . (3.38)

To analyze the convergence of the iteration method, we should consider two conditions: a)

the two-norm of the Jacobian matrix of function h in (3.38) with respect to ∆̄∆∆ is less than a

constant which is less than one; b) h maps a space M to itself.

Now, we consider about the first condition. Compute the Jacobian matrix of function h

from equation (3.38) with respect to ∆̄∆∆:

∂h(∆̄∆∆)

∂∆̄∆∆
=


1− r 0 0

0 1− r 0

0 0 1− r + 3r(1+ν)(2ν−1)G
E(ν−1)x̃2ỹ3

 , (3.39)

By definition, the two-norm of a matrix is the square root of the largest singular value. In

this case, since the Jacobian is a diagonal matrix, the two-norm will be the absolute value of

the largest diagonal entry. Now, since ν < 0.5, the biggest entry in the Jacobian matrix is the

last entry and it is positive. In order to converge, we derive:

1− r +
3r(1 + ν)(2ν − 1)G

E(ν − 1)x̃2ỹ3
< 1. (3.40)
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After simplifying it, we obtain:

3(1 + ν)(2ν − 1)

E(ν − 1)x̃2ỹ3
G < 1. (3.41)

Since G = mg, where g = 9.8N/kg, and Ṽ = ỹ3z̃1/6, we can transform the above inequality to

obtain a relation between density ρ̃ = m/Ṽ and variable z̃1:

3(1 + ν)(2ν − 1)

E(ν − 1)x̃2ỹ3
mg < 1. (3.42)

Subsequently,

3(1 + ν)(2ν − 1)mgz̃1/6

E(ν − 1)x̃2ỹ3z̃1/6
< 1. (3.43)

Substituting Ṽ into the above inequality,

(1 + ν)(2ν − 1)mgz̃1

2E(ν − 1)Ṽ
< 1. (3.44)

Plug in ρ̃ = m/Ṽ ,

(1 + ν)(2ν − 1)gz̃1ρ̃

2E(ν − 1)
< 1, (3.45)

After simplification, we obtain:

ρ̃ <
2E(ν − 1)

(1 + ν)(2ν − 1)gz̃1
. (3.46)

Thus, if the density of a single tetrahedron is within which the above inequality holds, then

the numerical method will satisfy convergence condition a).

Finally, we consider the convergence condition b). In our algorithm, since we apply an extra

gravity force at the beginning, the first step displacement happens only in the z direction, which

means u
(0)
1 and v

(0)
1 will be 0. From equation (3.38), we know that in any step k, u

(k)
1 and v

(k)
1

will always be 0. Therefore the displacement happens only in z direction, which is w1.

In other words, we only analyze the third element in equation (3.38), and see if we will find

a interval of w1 that maps to the same range interval of the third element. We rewrite this

element as a line equation with variable w1:

h(∆̄∆∆)(3) = (1− r)w1 +
3r(1 + ν)(2ν − 1)G(w1 − z̃1)

E(ν − 1)x̃2ỹ3

= (1− r +
3r(1 + ν)(2ν − 1)G

E(ν − 1)x̃2ỹ3
)w1 −

3r(1 + ν)(2ν − 1)G

E(ν − 1)x̃2ỹ3
z1 (3.47)
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We can treat γ = α(w1) as a function, which is a line in the w1-γ plane. It’s clear that

the y-intercept is negative, and the slope is positive. Therefore, only when the slope is less

than one, after several iterations, the interval of w1 can be mapped to a smaller interval, which

satisfies condition b):

1− r +
3r(1 + ν)(2ν − 1)G

E(ν − 1)x̃2ỹ3
< 1 (3.48)

Hence, we notice that the above inequality is exactly the same as inequality (3.40). The rest

of analysis here is the same as inequalities (3.41) to (3.46).

Also, since our goal is to find the interval that the function maps it to itself, we can consider

about the line γ = w1 intersect with the line γ = α(w1). Then for any d ≤ w∗1, the region

D = [d, 0] will satisfy our requirement (b). Figure (3.2) illustrate it:

Figure 3.2 Convergence analysis of single tetrahedron

Therefore, combine condition a) and b), the sufficient condition for the iteration method to

converge is:

ρ̃ <
2E(ν − 1)

(1 + ν)(2ν − 1)gz̃1
. (3.49)

Let’s see the numerical simulation result of the iteration method applied on a single tetra-

hedron. Here, we chose Young’s modulus E = 5× 103, mass 0.0765, density 103, and Poisson’s

ratio ν = 0.3. The vertices of the tetrahedron are: p̃1 = (
√

3, 1, 2
√

2)T /40, p̃2 = (
√

3/20, 0, 0)T ,

p̃3 = (
√

3, 3, 0)T /40, p̃4 = (0, 0, 0),



www.manaraa.com

32

Table 3.1 Convergence condition (b) analysis

r = 1 r = 0.5

ρ̃ # iters # iters

102 4 10

5× 102 4 14

104 6 17

2× 103 11 27

The figure 3.3 illustrates several more examples and comparisons between iteration steps

and parameter r.

Figure 3.3 Iteration comparisons

The result we got is w1 ≈ −0.00435467. It tells us the gravity free shape of the tetrahedron

would be the top vertex moves up for −w1. We can also get the result of the bottom three

inner forces of each of the vertex. The result will be listed after figure 3.3.

(f2x, f2y, f2z)
T ≈ (−0.0694, 0.04, 0.25)T

(f3x, f3y, f3z)
T ≈ (0,−0.08, 0.25)T

(f4x, f4y, f4z)
T ≈ (0.0694, 0.04, 0.25)T (3.50)

Then the ratio between the magnitudes of the tangential and normal forces at each of
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p2,p3,p4 will be:

ratio 2 :

√
f22x + f22y

f2z
≈ (−0.0694)2 + (0.04)2

0.25
= 0.320494

ratio 3 :

√
f23x + f23y

f3z
≈ (0)2 + (−0.08)2

0.25
= 0.320494

ratio 4 :

√
f24x + f24y

f4z
≈ (0.0694)2 + (0.04)2

0.25
= 0.320494 (3.51)

Therefore, the result of the ratios is consistent with what we thought. They are the same

number due to the symmetry of the shape of the tetrahedron. Some frictional forces are needed

to keep the tetrahedron to stay on the table.

3.5 General shape

3.5.1 Jacobian under 2-norm

The iteration function is

α(∆) = ∆′ = (1− r)∆ + rK̄−1(∆)Ḡ, (3.52)

which is based on equation 3.33,where r ∈ (0, 1] is the parameter, K̄ is the reduced stiffness

matrix, and Ḡ is the reduced gravity vector. Clearly the gravity on each node is constant due

to our way of distributing the gravity, it is proportional to the density ρ, let us denote

Ḡ = Ğρ, (3.53)

and Ğ is a vector with the same size as Ḡ Also, given that the stiffness matrix is scaled by

Young’s Modulus E, denote

K̄ = EK̆, (3.54)

we will get:

K̄−1 =
1

E
K̆−1. (3.55)
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Let s = ρ/E,

∆′ = (1− r)∆ + rsK̆−1Ğ. (3.56)

It would be interesting for us to know about the convergence of the iteration method for

general model. In the next part, we will discuss about the condition that the two norm of the

Jacobian being less than one, which is one of the sufficient conditions for the iteration method

to converge. The Jacobian of ∆′ is

J [∆′] = (1− r)I + rsJ [K̆−1Ğ]. (3.57)

Denote Jβ = J [K̆−1Ğ]. The 2-norm of the Jacobian is

‖J [∆′]‖2 = ‖(1− r)I + rsJβ‖2

= max
x
‖[(1− r)I + rsJβ]x‖2

= max
x
‖(1− r)x+ rsJβx‖2, (3.58)

where x is a unit vector.1 Suppose the eigenvectors of Jβ are v1,v2, . . . ,v3n−9, and the

corresponding eigenvalues are λ1, λ2, . . . , λ3n−9. So

x =

3n−9∑
i=1

(vTi x)vi. (3.59)

Set pi = vTi x, and plug in the Equation 3.59,

‖J [∆′]‖2 = max
x
‖(1− r)

3n−9∑
i=1

pivi + rs
3n−9∑
i=1

λipivi‖2

= max
x
‖
3n−9∑
i=1

(1− r + rsλi)pivi‖2

= max
x

√√√√3n−9∑
i=1

(1− r + rsλi)2p2i

= max
i
|1− r + rsλi|. (3.60)

Since
∑3n−9

i=1 p2i = 1, we can get to the last step.

1Proof and analysis was provided by Feng Guo.
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Let λmax be the maximum eigenvalue and λmin be the minimum eigenvalue. Fix s, and

define a group of lines with respect to r:

fi(r) = 1 + (sλi − 1)r (3.61)

this group of line segments will be bounded by the following two because of the restrictions

limit on λmax and λmin

fmax(r) = 1 + (sλmax − 1)r

fmin(r) = 1 + (sλmin − 1)r (3.62)

i.e. fmin ≤ fi ≤ fmax, ∀r ∈ (0, 1]. This suggests that

‖J [∆′]‖2(r) = max(|fmin|, |fmax|). (3.63)

The following discussions will be dependent on the values of λmax and λmin.

1. When λmax ≥ 1
s , ‖J [∆′]‖2 ≥ fmax ≥ 1,∀r ∈ (0, 1].

2. When 0 ≤ λmax <
1
s and λmin ≥ −λmax, ∀r ∈ (0, 1], ‖J [∆′]‖2 = fmax < 1. The optimal

value of ‖J [∆′]‖∗2 = sλmax will be reached at r∗ = 1.

Proof When λmin ≥ 0, ∀r ∈ (0, 1], 0 ≤ fmin ≤ fmax. The minimum of ‖J [∆′]‖2 is

reached when r = 1.

When −λmax ≤ λmin < 0,

|fmax(1)| = sλmax ≥ −sλmin = |fmin(1)|

So ∀r ∈ (0, 1], fmax ≥ fmin.

3. When λmax <
1
s and λmin < −λmax,

r∗ =
2

2− s(λmin + λmax)
,

that’s when the minimum is achieved.

‖J [∆′]‖∗2 =
s(λmax − λmin)

2− s(λmax + λmin)

For the other situations,



www.manaraa.com

36

(a) λmin > −1
s , r can be any value in (0, 1];

(b) λmin ≤ −1
s , r can only be values in (0, 2

1−sλmin
).

The proof will be similar to the previous one.

In summation, when λmax ≤ 0, given any s, there always exists some r so that the iteration

can converge.

‖J [∆′]‖∗2 =
λmax − λmin

2/s− (λmax + λmin)

< −λmax − λmin

λmax + λmin

= 1− 2λmax

λmax + λmin

≤ 1. (3.64)

3.5.2 Analysis of the Jacobian with 1-norm or ∞-norm

The computing time of the eigenvalues of Jβ will be long. Therefore, we may take a look at

the other norms to see if there can be any difference. For example, to compute the 1-norm or

∞-norm, we only have to go through all the elements in Jk, which may help us save a copious

amount of time in computing.

By definition, the 1-norm (∞-norm) of a matrix is the maximum of the matrix’s absolute

column (row) sum. So the 1-norm is:

κi =
∑
j 6=i
|Aji| (3.65)

the ∞-norm be:

κi =
∑
j 6=i
|Aij | (3.66)

where Aij is the element of A on the i-th row and j-th column. To simplify the notation, in

the following analysis we denote A = Jβ.

Then

‖J [∆′]‖ = ‖(1− r)I + rsA‖

= max
i
‖|1− r + rsAii|+ rsκi‖ (3.67)
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Let

gi = |1− r + rsAii|+ rsκi,

then if Aii ≥ 0,

gi = r[s(Aii + κi)− 1] + 1, (3.68)

and if Aii < 0,

gi =

 r[s(κi +Aii)− 1] + 1, r ∈ (0, 1
1−sAii ]

r[s(κi −Aii) + 1]− 1, r ∈ ( 1
1−sAii , 1]

(3.69)

Clearly that for all i = 1, · · · , 3n− 9, gi ≥ 0.

Let a = maxi(κi +Aii), and b = maxj(κj −Ajj), where j ∈ {x ∈ Z+|x ≤ 3n− 9 and Axx <

0}, then it’s not hard to see that ‖J [∆′]‖ = max{r(sa− 1) + 1, r(sb+ 1)− 1}.

Depending on the values of a and b, there are several cases:

1. When a ≥ 1
s , ‖J [∆′]‖ ≥ 1.

2. When a < 1
s , b ≤ a, ‖J [∆′]‖ = r(sa− 1) + 1 < 1. With r∗ = 1, and ‖J [∆′]∗‖ = sa.

3. When a < 1
s , b > a,

‖J [∆′]‖ =

 r(sa− 1) + 1, r ∈ (0, 2
s(b−a)+2 ]

r(sb+ 1)− 1, r ∈ ( 2
s(b−a)+2 , 1]

(3.70)

Here r∗ = 2
s(b−a)+2 , where ‖J [∆′]‖∗ = s(a+b)

s(b−a)+2 . The range of possible r could be

(a) (0, 1], when b < 1
s

(b) (0, 2
sb+1), when b ≥ 1

s

Suppose a = κh +Ahh, and b = κl −All. Note that

r∗ =
2

s(b− a) + 2

=
2

s(κl −All − κh −Ahh) + 2

=
2

s(κl +All − κh −Ahh − 2All) + 2

≥ 2

−2sAll + 2

=
1

1− sAll
.
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So the r∗ is always in the valid range of [ 1
1−sAii , 1].

3.6 Simulation, experiment and results

Based on the result from previous section, to do a little bit transformation,we can get the

Jacobian matrix in general norm with the following, here x is a very small vector:

‖Jα‖ = ‖J‖ ≈ max
‖(1− r)x+ r(β −K−1K(∆ + x)β)‖

‖x‖
, (3.71)

where

β(∆) = K−1(∆)G. (3.72)

We did the numerical simulation on a ball with radius 0.05, density 700, Young’s modulus

2.5 × 105, and Poisson’s ratio 0.3. The figure 3.4 shows us the ball deformed under gravity

sitting on the table with one triangle facet contacting with the table. The three vertices were

fixed.There are in total 367 vertices, 1144 tetrahedrons and 2613 triangular facets. The result

of the computed ∆ was 0.239769 in 2-norm.

Figure 3.4 A ball sitting on a table under gravity

The next figure shows us during the process, we compare the approximated Jacobian norm

‖Jαx‖
x with respect to iteration steps between different r values. Each of the curve below

represents different executions. Here, we take the x = ∆(l) −∆(l−1), and also evaluate the

value of Jacobian approximately at ∆(l−1).
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Figure 3.5 Curves from the simulation

From the figure 3.5 we can see that the iteration method succeed with the parameter

r = 0.5 but failed with the parameter r = 1. The plot of the curve with respect to r = 1 goes

dramatically up at the end. But the iteration method parameter r = 0.5 curve goes to zero at

the end, which means the norm of the Jacobian matrix should be within a small range, and

thus the convergence of the iteration method in this situation would be convergent.

In order to prove our gravity free recover helps the accuracy of computing deformations

of objects, we have conducted several experiments. In the experiment, the gelatin with name

brand ”Jell-O” was used. We use the 3D scanner to get the tetrahedron mesh of the gelatin,

then use the iteration numerical method to recover the shape under gravity free situation.

Finally we wanted to flip the jelly, and predict the shape under gravity by using the old FEM

stiffness matrix model and also our recovered shape stiffness matrix model. The original picture

of the jelly will be shown below.

The gelatin is in a bowl shape as shown in figure 3.6. We put it bottom up on a platform,

the bigger disk surface is in contacting with the plane. The 3D scanner we used was from

NextEngine, Inc., and to simplify the mesh using MeshLab (http://meshlab.sourceforge.net/).

The measured Young’s modulus of this gelatin was 3 × 103, the Poisson’s ratio was 0.4, the

density was 9.6× 102. The picture of the gelatin under gravity with the mesh output from the
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Figure 3.6 Gelatin pudding

scanner, and then our predicted gelatin shape in the mesh are:

Figure 3.7 Mesh representation of the pudding

The mesh we got from the 3D scanner was then transformed using the code from Com-

putational Geometry Algorithm Library (http://www.cgal.org/) into the tetrahedron mesh we

needed with 1119 vertices and 1012 facets. In total there were 5152 tetrahedra inside the body

of the model.

Using the same assumption that the vertices on the face that contacting the platform were

fixed, we restored the shape of the gelatin by using the iteration numerical method we have

introduced. The iteration parameter r was set to be 1, so the major part of the iteration

function will be β from equation (3.35). The total number of iteration steps is 8 by applying

the criteria that ||∆(k+1) −∆(k)|| < 10−6. The detailed table of the data is in table 3.2:

The figures of the flipped gelatin in real, triangulated mesh, predicted mesh by old stiffness

matrix model and the predicted shape by using recovering gravity free shape model are shown

in figure 3.9.
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Figure 3.8 Gelatin with recovered shape mesh

Table 3.2 Information of measurements

height top diam. bot. diam. volume

original 0.031 0.050 0.062 7.68× 10−5

original (gravity-free) 0.034 0.050 0.060 7.8× 10−5

flipped 0.031 0.057 0.056 7.6× 10−5

flipped (gravity) 0.028 0.062 0.051 7.4× 10−5

flipped (gravity-free) 0.030 0.060 0.050 7.5× 10−5

There are more figures 2 shown below for us to analyze the data. We plot the 2-norm of

the vector ∆ during the iteration. This measures the difference between the current gelatin

shape with the observed gelatin. At the end of the iteration, we can use the observed gelatin

shape add the vector ∆ to get the recovered gravity-free shape of the gelatin. These figures

are shown in figure 3.10 and in figure 3.11

3.7 Future work

Our model now computes the gravity free shape. In the future, more understanding on the

convergence condition of the iteration method is needed. Also, the relation involves the object

geometric information, density and the control parameter r are needed for further study as well

as the need to get a better understanding of the physical intuition of the iteration method.

After which, to conduct more experiment on different objects, such as fruit, human organs

and so on to prove the recover of the gravity free shape is necessary. In addition, the involvement

2The simulation and experiment figures were provided by Huan Lin.
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Figure 3.9 Flipped gelatin in (a) original. (b) original shape triangulation. (c) predicted shape

using old stiffness matrix model. (d) predicted shape using gravity-free model

Figure 3.10 2-norm of the vector ∆ during the iterations at lth step

of robotic manipulation, such as the use of a robot hand grasping the deformable object in the

experiment, rather than only allowing the object rest on the table in different positions.
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Figure 3.11 2-norm of the logarithm of difference between the vector ∆ in two consecutive

steps during the iterations
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Chapter4. SUMMARY AND DISCUSSION

The outline of this thesis paper starts with picking up objects, including both 2D objects

and 3D objects. In the 2D case, first introduced was the the problem of optimizing the two

fingers total normal forces, during the process of resisting a third force . The result shows that

at least one of the fingers force has to be along the direction of its friction cone edge. Next

discussed, was the algorithm in grasping 2D soft objects. After which segued in to two new

concepts, stable squeeze and pure squeeze. Then explained, were the four events of the contact

mode during the process of squeezing. For grasping and lifting a 3D object, gravity is an

important factor that needs to be considered. Finally explored, was the strategy of computing

initial configuration and then applying the two finger squeeze with the lift test in the process.

Since most of the stiffness matrix we have constructed are based on the observed deformed

shape of an object under gravity, it is not an accurate model. The idea of recovering the gravity

free shape of the object was implemented by using the numerical iteration method.

There is also prospective work that can be considered in the future: including but not

limited to, a more in-depth understanding of the convergence of the numerical method being

applied on a general model, and how the softness of the object affects the result of picking up

strategies.
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